

Visual localization in urban environments employing 3D city models

Loeper, Yasmin¹; Gerke, Markus¹; Kern, Alexander²; Alamouri, Ahmed¹; Fanta-Jende, Phillipp³; Bajauri, Mohammad Shafi¹

Low-Cost 3D Workshop 2024. Brescia, Italy

¹Technische Universität Braunschweig Institute for Geodesy and Photogrammetrie

²Technische Universität BraunschweigInstitute of Flight Guidance

³AIT Austrian Institute of Technology Unit Assistive and Autonomous Systems, Center for Vision, Automation and Control

Motivation

Problems Reflecting and interrupting signals Spoofing Signal Blocking F Т Ħ Goal Ħ Development of a visual localization system for satellitebased navigation V CONTRACT

Technische Universität Braunschweig

Visual localization in urban environments employing 3D city models | Yasmin Loeper | Low-Cost 3D 2024, Brescia, Italy| Slide 2

Related Work

Line Detection Module

Visual localization in urban environments employing 3D city models | Yasmin Loeper | Low-Cost 3D 2024, Brescia, Italy| Slide 6

Projection Module

Projection and occlusion check

Extracted building lines

Score Module

Visual localization in urban environments employing 3D city models | Yasmin Loeper | Low-Cost 3D 2024, Brescia, Italy| Slide 12

Optimization Process

Experiments

Query dataset

Image size 969 x 1280

GSD of 4 cm

RMSE at GCP of (6; 7; 2) cm in X, Y, Z; mean errors at CPs of (7; 4; 1) cm

EO parameters mean error: 1.5 cm (in X, Y), 0.7 cm (in Z); standard deviations: 6, 2 mm; rotation components mean error: 0.02° at $\sigma = 0.04^{\circ}$

Experiments

Reference dataset

3D reference data: city model in LoD2 model of Braunschweig [4]

Building outlines from cadastral data, DTM in 5 m resolution and 3D data from laser scan or matching point cloud.

Positional accuracy depends on the cadastral data and the height accuracy on the matching point cloud

Results

Visual localization in urban environments employing 3D city models | Yasmin Loeper | Low-Cost 3D 2024, Brescia, Italy| Slide 17

Results and Discussion

Ambiguity due to the definition of the score

Compromise between general validity and accuracy

Reliability in difficult scences not given

Conclusion and Future Work

Visual localization using low cost 3D model data

Requires little storage space

Quality of the model influences the accuracy of proposed camera poses

Highlight uniqueness of the poses by testing to include segmented information, including gradient information of query image and even more than just straight lines

References

[1] Panek, Vojtech; Kukelova, Zuzana; Sattler, Torsten (2022): MeshLoc: Mesh-Based Visual Localization. 10.48550/arXiv.2207.10762

[2] Panek, Vojtech; Kukelova, Zuzana; Sattler, Torsten (2023): Visual Localization using Imperfect 3D Models from the Internet. 10.48550/arXiv.2304.05947

 [3] Pautrat, Rémi; Lin, Juan-Ting; Larsson, Viktor; Oswald, Martin R.; Pollefeys, Marc (2021): SOLD2: Self-supervised Occlusion-aware Line Description and Detection. 10.48550/arXiv.2104.03362

[4] Landesamt für Geoinformation und Landesvermessung Niedersachsen, 2024

Appendix: Related Work

